
Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics

0. Apology

This was my 1984 (NYU) talk. My 1986 (Stanford) conference talk began

“The last time Dick [Jenks] asked me to do this, my talk was so weird, and my slides so
complicated that I left much of my audience exhausted and confused. By way of remedy,
we have amassed here today an array of video equipment so expensive that it can actually
reduce mathematics to the intellectual level of daytime TV. So kick back, shift your brain
into neutral, and we’ll watch a few pictures whose only purpose is to leave you relaxed and
confused.”

I then had the great fortune to project onto a huge, bright screen, a live, relatively disaster
free, forty minute color animation. (Let me assure those who attended that the backup
videotape would have been a disaster by comparison. You just can’t tape most of that
stuff, or even convert it to current broadcast standard.)

Although the talk was fun, it contained little suitable for print publication. “The medium
was the message.” That is, the novelty was not so much in the mathematical concepts
presented, but rather in the way that motion (particularly zooming) and color could vivify
those concepts.

We look forward to an era of electronic publication in which widely available, muscu-
lar, high definition graphics engines will let us vivify for each other genuinely interesting
mathematics.

Meanwhile, all I can offer is atonement for yet another misdeed at the aforementioned
(NYU) conference—due to a two-year separation from TEX, I never contributed to the
proceedings. Here then is a slightly less incoherent rendition of my 1984 talk.

1. Teaser

By strip mining, I meant applying the power of a modern symbolic processor, particularly
via undetermined coefficients, to old fashioned investigations that were computationally
inaccessible to the old fashioned investigators.

I feel sometimes like a kid at the controls of huge, bucket wheel excavator, chewing in-
discriminately into apparently mined out formations, yet finding paydirt through sheer,
childish brutality.

Random excavations, such as with Berlekamp’s factoring algorithm, produce random
nuggets:

(x− a)3

(z − x)3(x− y)3
+

(y − a)3

(x− y)3(y − z)3
+

(z − a)3

(y − z)3(z − x)3
= 3

(x− a)(y − a)(z − a)

(x− y)2(y − z)2(z − x)2
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1

(w − x)3(w − y)3(w − z)3
+

1

(x− y)3(x− z)3(x− w)3

+
1

(y − z)3(y − w)3(y − x)3
+

1

(z − w)3(z − x)3(z − y)3

= 3
(w − x− y + z)(w − x+ y − z)(w + x− y − z)

(w − x)2(w − y)2(w − z)2(x− y)2(x− z)2(y − z)2
,

as does fooling with the trigonometric simplifiers:

sin(x− w) sin(x− y) sin(y − w) sin(y − z) sin(z − w) sin(z − x)

+ cos(x− w) cos(x− y) sin(y − w) cos(y − z) cos(z − w) sin(z − x)

+ cos(x− w) sin(x− y) cos(y − w) cos(y − z) sin(z − w) cos(z − x)

+ sin(x− w) cos(x− y) cos(y − w) sin(y − z) cos(z − w) cos(z − x) = 0.

These results are just like the factorization of x2 − y2, or the sine addition formula, only
millions of times less useful. They lead one to speculate whether algebraic engines in the
Renaissance might have made this sort of thing into an art form.

More systematic excavations churn up bigger clumps of pay dirt:

∑

n≥0

(1− q6n+
1

2 )
(q−1/2, q3/2; q)2n

(q2; q)4n

(q5/2/a, a; q5)n
(q3/2/a, a/q; q)n

qn

=
(
√
q; q)∞(a; q5)∞
(q2, a/q; q)∞





(a/
√
q; q)∞(q5; q5)∞

(q5/2, aq5/2; q5)∞
−

a

q

(
√
q; q)∞(q5/2/a; q5)∞
(q3/2/a; q)∞

∑

n≥0

(−a2)nq5n
2/2





is but one of dozens of identities that can be extracted from a single mathematical structure
uncovered by a brute force attack on certain simultaneous polynomial equations. I call such
a structure a “path invariant matrix system.” Points in some space are linked by edges
that are labeled with matrices in such a way that the matrix product taken along any path
depends only on the endpoints. The path invariance condition on minimal loops induces
polynomial equations among the matrix elements. A successful solution then provides a
limitless space of closed contours, each yielding a correct identity, several of which may be
concise enough to be interesting.

2. Matrices
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Before getting into path invariance, let me extol some notational, analytic, and compu-
tational virtues of matrix products. First, notice how cumbersome are the conventional
notations for an identity such as

∏

k≥1





k2

(4k + 2)2
30k − 11

16k(2k − 1)
0 1



 =

(

0 ζ(3)

0 1

)

.

Hypergeometrically, you get a ridiculous 19
16 6

F5[
1
16
]. As a straight sum, you can do as well

as

∑

k≥1

30k − 11

4(2k − 1)k3
(

2k
k

)2
= ζ(3),

but, taken literally, this says something rather silly: add up a sequence of terms whose

kth contains products of k factors, in this case
(

2k
k

)2
. Now most of us know the trick of

incrementally computing each term from the previous, but this is nowhere hinted in the
sum. Furthermore, you’ll need a less-than-obvious auxiliary variable to avoid the wasted
effort of cancelling out factors introduced in the term just preceding, or, more seriously, to
avoid division by 0 if the numerator of the preceding term happens to vanish (e.g, if the
11 above were instead a 90).

Now suppose that you want a very precise value of ζ(3), and thus wish to sum n terms of
this series. You will find it dramatically cheaper to write out instead the first n matrices,
and then pairwise multiply to form #n/2$ products, and repeat until only one matrix
remains. (In 1985, I used this technique, essentially due to R. Schroeppel, to temporarily
steal the π computation record from Japan.)

This representation of simple sums as 2 × 2 matrix products is merely a special case (a
vanishing off-diagonal) of the well known representation of nested homographic functions.
When a diagonal element vanishes, you have a continued fraction. It is strange that so
fruitful a representation is applied so rarely to sums. Perhaps discouraging is the apparent
nonlinearity of the matrix product form, (partially) concealing such familiar operations as
termwise differentiation or combination with other series. We shall see that a small bag of
tricks, again based on path invariance, more than remedies these problems.

Even greater simplifications are possible with larger matrices:

m
∑

n=0

anx
n−1

n−1
∑

k=0

bk
k!

=
m
∏

n=0







x

n+ 1
bn 0

0 x an

0 0 1







1,3

,
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where the subscript1,3 means the upper right element. Here, the matrix product not only
vaporizes a nested loop, but also dispels an artificial asymmetry between ai and bi. They
can, in fact, be switched via summation by parts, but then they are asymmetrical the
other way!

And here is a way to get factorable multiple sums:

m
∑

i=0

m
∑

j=0

aibj =
m
∏

n=0







1 an bn anbn
0 1 0 bn
0 0 1 an
0 0 0 1







1,4

.

Perhaps most important of all are those sadly neglected recurrences that can be expressed
by products of denser, (typically) nontriangular matrices. Who knows what we might
find, once emancipated from our feebly notated sums, (scalar) products, and continued
fractions? One enticement is a smooth generalization of the notion of “closed form”:
a recurrence is in simpler (and therefore more canonical) form when it is the product of
smaller or sparser matrices. Fully closed form is a 1×1, i.e. scalar product. The importance
of such products, by the way, is almost purely their uniqueness and comparability, since
they usually converge more slowly than most of the higher order recurrences that they
canonicalize.

3. Path Invariance

This idea was crystalized by Kevin Karplus while a student in the only course I ever
taught. Label the edges of some sort of directed, multiply connected graph with matrices
so that their product, taken along any connected sequence of edges, depends only on the
endpoints. Usually, the graph is piecewise grid-like, and it is sufficient to demonstrate path
invariance around each of the grid cells, and around the (usually) triangular cells where the
grids patch together. For example, a purely two dimensional, path invariant grid would
look like

k ↑
→
n

...
...

∣

∣

∣

∣

∣

∣

· · ·−−−→•−−−Nk+1,n−−−→•−−−−· · ·
.







.







Kk,n Kk,n+1
∣

∣

∣

∣

∣

∣

∣

∣

· · ·−−−→•−−−−Nk,n−−−−→•−−−−· · ·
.





.





...
...
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where the matrices Nk,n and Kk,n satisfy the invariance

Nk,nKk,n+1 = Kk,nNk+1,n,

a sort of discrete Cauchy-Riemann condition. For example, we might have

Nk,n :=





qk

1− qn+1
1− qk

0 1



 , Kk,n :=





qn

1− qk+1
1− qn

0 1



 .

Then

Nk,nKk,n+1 = Kk,nNk+1,n =





qn+k+1

(1− qn+1)(1− qk+1)
1

0 1



 .

If we now equate the two path products along a rectangle starting at n = 0, k = a and
closing at n = nmax, k = kmax, and then let (kmax, nmax) → (∞,∞) (however they wish,
in this case), then we have, after a limit interchange justifiable when |q| < 1,

∏

n≥0





qa

1− qn+1
1− qa

0 1





∏

k≥a

(

0 1

0 1

)

=
∏

k≥a





1

1− qk+1
0

0 1





∏

n≥0

(

0 1

0 1

)

.

Expanding the infinite products, (and, for convergence, assuming |qa| < 1, i.e. )a > 0),

(

0 (1− qa)
(

1 + qa

1−q

(

1 + qa

1−q2

(

1 + · · ·
)))

0 1

) (

0 1

0 1

)

=





1

1− qa+1

1

1− qa+2

1

1− qa+3
· · · 0

0 1





(

0 1

0 1

)

,

or, equating the upper right elements and dividing by 1− qa,

1+
qa

1− q
+

q2a

(1− q)(1− q2)
+

q3a

(1− q)(1− q2)(1− q3)
+ · · · =

1

1− qa
1

1− qa+1

1

1− qa+2
· · · .

Given path invariance, we can adjoin the reverses of those edges with invertible labels.
And we can freely shortcut any connected sequence of edges by a single edge, since its
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associated matrix is uniquely determined. In particular, we can draw the diagonals Jj
connecting those nodes where k − n = a:

...
... Jj+1

∣

∣

∣

∣

∣

∣

· · ·−−−−−→•−−−Nj+a+1,j−−−→•−−−−−−· · ·
.







.







Kj+a,j Jj Kj+a,j+1
∣

∣

∣

∣

∣

∣

∣

∣

· · ·−−−−−→•−−−−Nj+a,j−−−−→•−−−−−−· · ·
.





.





Jj−1

...
...

Then

Jj := Nj+a,jKj+a,j+1 = Kj+a,jNj+a+1,j =





q2j+a+1

(1− qj+1)(1− qj+a+1)
1

0 1



 ,

and the shortcut across the whole rectangle is equivalent to the previous edge traversals:

∏

j≥0

Jj =
∏

n≥0

Na,n

∏

k≥a

Kk,∞ =
∏

k≥a

Kk,0

∏

n≥0

N∞,n,

that is

1+
qa+1

(1− q)(1− qa+1)
+

q2a+4

(1− q)(1− q2)(1− qa+1)(1− qa+2)

+
q3a+9

(1− q)(1− q2)(1− q3)(1− qa+1)(1− qa+2)(1− qa+3)
+ · · ·

= (1− qa)
(

1 +
qa

1− q
+

q2a

(1− q)(1− q2)
+

q3a

(1− q)(1− q2)(1− q3)
+ · · ·

)

=
1

1− qa+1

1

1− qa+2

1

1− qa+3
· · · .

The quadratically progressing exponent in the diagonal sum enhances convergence both
numerically, and in the symbolic power series expansion at q = 0.
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4. One step transformations

The grids for most of the standard series transformations (such as Kummer’s or Euler’s) are
just “railroad tracks”. One rail (call it the j = 0 rail) is labeled with the original matrix
sequence N0,n, and the “ties”, labeled with matrices Jn, mechanize the transformation
to the j = 1 rail. This same geometry mechanizes the termwise transformation of a
composition of arbitrary homographic functions (possibly a sum!) into a (typically, non-
regular) continued fraction. That is, let

N0,n :=

(

an bn

cn dn

)

be the matrix for the homographic function

fn(x) :=
anx+ bn
cnx+ dn

,

and define

gn := an +
cn

cn−1
dn−1, hn := −

cn+1

cn
(andn − bncn).

Here, we must have cn "= 0, so any sum must be via bn = 0. Then the “tie” matrices are

Jn :=

(

1 an − gn

0 cn

)

and the continued fraction (j = 1) rail has matrices

N1,n :=

(

gn hn

1 0

)

.

Path invariance follows from mechanically verifying N0,nJn+1 = JnN1,n. Then the equiva-
lence of the paths (0, 1) → (0, m) → (1, m) and (0, 1) → (1, 1) → (1, m), after multiplying
on the right by the columnating equation defining x,

(

(

y + dm

dm+1

)

cm+1

1

)

=:

(

x

1

)

,

and equating the ratios of the upper and lower elements, gives the desired identity:
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f1(f2(. . . (fm(y))...)) = −
d0
c0

+
1

c1

(

g1 +
h1

g2 +
h2

. . .

gm +
hm

x

)

.

To convert a sum from the standard form (cn = 0), adjoin it as a N−1,n “third rail”
via ties J ′

n := ( 01
1
0 ), or any other matrix which unzeros the lower left element of N0,n =

J ′−1
n N−1,nJ

′
n+1.

Even the artifice of multiplication by
(

x
1

)

fits into the path invariance scheme, merely
by connecting a new, “black hole” node to all existing nodes via edges labeled with this
(uninvertible) matrix.

Another transformation, summation by parts, is applicable either before or after conversion
to ratio form, via a “double decker” railroad track in the form of a square tube. Let pn
and qn be two arbitrary functions of the summation index n. Traditional summation by
parts transpires on the bottom (j = 0) track, via the matrices

N0,0,n :=

(

1 qn(pn+1 − pn)

0 1

)

, N0,1,n =

(

1 pn+1(qn+1 − qn)

0 1

)

K0,0,n :=

(−1 −pnqn

0 1

)

,

where the subscript order is j, k, n. Now suppose that

ρn :=
pn+1

pn
, and σn :=

qn+1

qn

are “nicer” functions of n than the corresponding pn and qn, perhaps by virtue of factorials
or nth powers in the latter. Then one can jump to the upper track, where summation by
parts looks like

N1,0,n =

(

ρnσn ρn − 1

0 1

)

, N1,1,n =

(

ρnσn ρn(σn − 1)

0 1

)

K1,0,n =

(−1 −1

0 1

)

if one labels the “vertical ties” with

8



J0,k,n :=

(

pnqn 0

0 1

)

.

For example, with

ρn :=
n+ c

n+ e

n+ d

n+ c+ d− e
, σn :=

n+ a+ 1

n+ 1

n+ b+ 1

n+ a+ b+ 1
,

the path equivalence (1, 0, 0) → (1, 1, 0) → (1, 1,∞) = (1, 0, 0) → (1, 0,∞) → (1, 1,∞),
i.e.

K1,0,0

∏

n≥0

N1,1,n =





∏

n≥0

N1,0,n



K1,0,∞,

gives, after negating the upper right elements,

4F3

[

a, b, c, d

a+ b+ 1, e, c+ d− e

]

=
(a+ b)! (c+ d− e− 1)! (e− 1)!

a! b! (c− 1)! (d− 1)!

+
e− c

e

e− d

e− c− d
4F3

[

a+ 1, b+ 1, c, d

a+ b+ 1, e+ 1, c+ d− e+ 1

]

.

When only one of σn and ρn is nice, it is straightforward to construct diagonal ties linking
an upper rail with a lower one, getting a hybrid, partially rationalized summation by parts.

5. Telescopy

Telescopy takes place between a single rail and a black hole. The problem is to find
columnar, “diving in” matrices which path-invariantly connect the black hole to all the
nodes along the rail. Then the telescoping identity is the equivalence between diving
straight in, and performing the sum prior to diving in.
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•

(

1 bn − bn−1

0 1

) (

−bn
1

) (

−bn+1

1

) (

1 bn+2 − bn+1

0 1

)

• •

(

1 bn+1 − bn

0 1

)

A nontrivial choice of bn might be

bn :=
2−n

1− x2−n
⇒

∑

n≥1

2−n

1 + x2−n
=

1

log x
+

1

1− x
,

when the alternate paths dive in from n = 1 and n = ∞.

Rationalized telescopy differs from regular telescopy only in the contents of the matrices.





1 + fn
fn+1

1

0 1





(

−fn+1

1

)

=

(

−fn
1

)

⇒
m
∏

n=0





1 + fn
fn+1

1

0 1





(

−fm+1

1

)

=

(

−f0
1

)

An interesting choice of fn is

fn := −
x2−n

+ c

c2 + c
⇒

∑

n≥0

(
√
x− c)(

√√
x− c) . . . (x2−n

− c) =
x
c
+ 1

c+ 1
, |1− c| < 1.

Any hypergeometric sum, that is, one whose term ratio is a rational function of the summa-
tion index n, can be expressed in numerous ways as a product of matrices of polynomials
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in n. We now have infallible algorithms (decision procedures) for determining, where pos-
sible, arbitrary partial sums of such series. At least one of these algorithms [1] hinges
on minimizing the degrees of the on-diagonal polynomials at the expense of the non-zero
off-diagonal one. This canonicalization proceeds in a finite number of steps, and can be
visualized as path invariant hopping between parallel rails to the minimal one. The min-
imality then reduces the search for the telescoper (“diving in”) matrix to a single system
of simultaneous linear equations.

6. “Residues”, Euler-Maclaurin summation

Let f be sufficiently tame, and define

Nk,n :=

(

1
∫ 1
0 f (k)(t+ n)Bk(t) dt

0 1

)

, Kk,n :=

(

−
1

k + 1
−
Bk+1

k + 1
f (k)(n)

0 1

)

.

Then path invariance,

Nk,nKk,n+1 = Kk,nNk+1,n, k > 0

follows from integration by parts, except when k = 0, where

N0,nK0,n+1 = EnK0,nN1,n,

En :=

(

1 fn+1

0 1

)

= N0,nK0,n+1N
−1
1,nK

−1
0,n,

because 1 is the only non-negative integer k for which Bk(0) "= Bk(1). Thus, path invari-
ance breaks down between k = 0 and k = 1, and the residues are tallied by the En, which
commute to the left. In the final formula, these residues comprise the

∑

f(n) to which
the

∫

f(t) (from the k = 0 path) is the first approximation.

b
∏

n=a

N0,n

c
∏

k=0

Kk,b+1 =
b
∏

j=a

Ej

c
∏

k=0

Kk,a

b
∏

n=a

Nc+1,n

⇔
∫ b+1

a

f(t) dt+
c

∑

k=0

(−)k+1

(k + 1)!
Bk+1f

(k)(b+ 1)

=
b

∑

n=a

f(n+ 1) +
c

∑

k=0

(−)k+1

(k + 1)!
Bk+1f

(k)(a) +
(−)c+1

(c+ 1)!

b
∑

n=a

∫ 1

0
f (c+1)(t+ n)Bc+1(t) dt

11



7. 3F2[1] Rosetta stone

Ng,h,i,j,k,n :=













n+ h

n+ 1

n+ i

n+ g

n+ j

n+ k
0 n

0
n+ h

n+ 1

n+ i

n+ g

n+ j

n+ k
1

0 0 1













Kg,h,i,j,k,n :=













(k − h)(k − i)(k − j) + hij

k(k + g − h− i− j − 1)(k + n)

hij

(k + g − h− i− j − 1)(k + n)

n(n+ g − 1)

k + g − h− i− j − 1

1

k + n

k

k + n
0

0 0 1













Jg,h,i,j,k,n :=













(j − k − g + h+ i+ 2)(j + n)

(j − g + 1)(j − k + 1)

hi(j + n)

(j − g + 1)(j − k + 1)
n
n+ g − 1

j − g + 1

n+ k − 1

j − k + 1

−
(j − k − g + h+ i+ 2)(j + n)

j(j − g + 1)(j − k + 1)

j + n

j

(

1−
h

j − g + 1

i

j − k + 1

)

−
n

j

n+ g − 1

j − g + 1

n+ k − 1

j − k + 1
0 0 1













This six-dimensional path invariant grid codifies all of the 3F2[1] contiguity relations (and,
as a limiting case, all the 2F1[z] and 1F1[z]). The three undisplayed matrices follow from
symmetry: Gg,h,i,j,k,n = Kk,h,i,j,g,n, etc. The 3F2[1] arises in element2,3 of

∏

n≥0 N...,n.
Any contiguous sum can be reached in a finite number of multiplications by the parameter
gunching matrices. The contiguity identity follows by closing the contour at n = ∞.

Contours that range indefinitely in indices other than n yield identities involving the gen-
eral 3F2[1] which are unsurprisingly resistant to conventional notation, due to the non-
triangularity of the non-N matrices. But even if we never become facile with them, at
least some such identities should be valuable for their rapid numerical convergence.

Perhaps more interestingly, by conceding linear constraints among the parameter indices,
we can triangularize some of their matrices, and get all of the familiar 3F2[1] identities
(Dixon’s, Saalschütz’s, Whipple’s, Watson’s, etc.). When you change coordinates, Whip-
ple’s becomes Watson’s, and Saalschütz’s becomes the very well poised 5F4.

The imposition of a linear constraint entails the replacement of several indices by a new
one. This corresponds to recoordinatization and then dimension reduction in the grid. An
example is given in section 9 (“An application”).

As often happens when a system like the above is symmetric in several indices, one can find
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a corresponding system with those symmetric indices collapsed into one, and running at
fractional speed, e.g. with (g, k) replaced by (k2 ,

k+1
2 ), or (h, i, j) replaced by ( j3 ,

j+1
3 , j+2

3 ).
Another way to put it is that, in the (g, k) case, the matrix Gk,h,i,j,k,nKk+1,h,i,j,k,n can be
factored into the form M(2k)M(2k+1). Such parameter specializations often simplify the
quest for triangularizations, and lead to interesting identities upon subsequent coordinate
changes.

Letting parameters, say h and g, blow up in a fixed relative ratio z yields a four-dimensional
system for 2F1[z], which is easier to strip mine for triangularizations, particularly when z
is negotiable. Further specializing via the abovementioned “fractional parameter collapse”
led me to

2F1

[

−a
2 ,

1−a
2

2a+ 3
2

∣

∣

∣

∣

1

5

]

=

√

π
5 +

√
5

5

25a+
3

2

53a+1

(2a+ 1
2)!

(a− 1
5 )!(a+

1
5 )!

2F1

[

−a
2 ,

1−a
2

2a+ 5
2

∣

∣

∣

∣

1

5

]

=

√

π
5−

√
5

5

25a+
7

2

53a+2

(2a+ 3
2)!

(a+ 2
5 )!(a+

3
5 )!

.

while strip mining the remaining degrees of freedom. (Professor P. Karlsson has lately
informed me that these were dug up by W. Heymann in 1898 ([2],[3]), i.e., with his bare
hands!)

I also have q-versions of the 3F2[1] system. These have the annoying property of sometimes
leaving factors of 1− q instead of 0 when subjected to the transformations which triangu-
larize their q = 1 cousins, which is one way to explain why we yet lack q-generalizations
for some of our more exotic 2F1 identities.

8. Continued fractions

This is three N -K planes, j = −1, 0, 1, joined by two J matrices. In the top (j = 1) plane,
the k direction computes a continued fraction, and on the bottom (j = −1), it’s the n
direction.

N1,k,n =

(

(1− n− k)z a
(

(k − 1)2 + b
)

z2

1 a(n− k + 1)z

)

,

K1,k,n =

(

(

(a− 1)k − (a+ 1)n+ 1
)

z a(k2 + b)z2

1 0

)

J0,k,n :=

(

zn+k
(

(a+ 1)n+ k − 1
)

zn+k+1

0 zn+k+1

)

13



N0,k,n :=

(

an a
(

b− (a+ 1)kn
)

1 −n− (a+ 1)k

)

, K0,k,n :=

(

ak a
(

b− (a+ 1)nk
)

1 −k − (a+ 1)n

)

J−1,k,n :=

(

z−n−k
(

1− (a+ 1)k − n
)

z−n−k

0 z−n−k−1

)

N−1,k,n =

(

(

(a− 1)n− (a+ 1)k + 1
)

z a(n2 + b)z2

1 0

)

,

K−1,k,n =

(

(1− k − n)z a
(

(n− 1)2 + b
)

z2

1 a(k − n+ 1)z

)

Thus, to get a relation between two continued fractions, we must j-hop between planes
before switching directions. If k runs from c to ∞ and n runs from d to ∞, and the
corresponding continued fractions converge, then they are insensitive to whatever subse-
quent matrices accrue on the right by way of path closure. I.e., the two paths can be
(j, k, n) = (0, c, d) → (1, c, d) → (1,∞, d) and (0, c, d) → (−1, c, d) → (−1, c,∞). This
yields the identity

f(c, d) = f(d, c)

where

f(x, y) := ((a+ 1)y + x− 1) z

+ ((a− 1)x− (a+ 1)y + 1) z +
a(x2 + b)z2

((a− 1)(x+ 1)− (a+ 1)y + 1) z +
a
(

(x+ 1)2 + b
)

z2

. . .

.

Note that z can be simply canceled out of this identity, but it is handy to leave it in. Since
we never travel in the j = 0 plane, you might consider discarding it and coalescing the
two J matrices. My only objections to this are that it would destroy some symmetry, and
more importantly, it would conceal the simple derivation, which just uses the technique in
section 4 to force alternately the K and N matrices into continued fraction form.

Another application of this particular path invariant system is a direct interderivation of
the series and continued fraction forms for arctan, in the form
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1 +
x2

3 +
4x2

5 +
9x2

. . .

=
x

arctanx
=

2y

1− y2

2 arctan y

=
1

(1− y2)

(

1−
y2

3
+

y4

5
− · · ·

) ,

where

x :=
2y

1− y2
.

We merely remain in the j = −1 plane and get our series by choosing the parameters to
annihilate the upper right element of K:

a := y, b := 0, z := −
2

1− y2
.

This gives

Fn := N−1, 1
2
,n =





2n− 1 n2

(

2y

1− y2

)2

1 0





and

Gk := K−1,k,1 =









2k

1− y2
0

1 −
2ky2

1− y2









.

Then the ratio of the lefthand elements of F1F2F3 . . . gives the continued fraction, while
the corresponding ratio from G 1

2

G 3

2

G 5

2

. . . gives the reciprocated series.

15



9. An application

Jj,k,n :=





1− qj−k+n+ 1

2

1− q2j+2

1− qj+k−n+ 1

2

1− qj−k−n+ 1

2

1− q2k

1− q

1− q2n

1− qj−k−n+ 1

2

qj−k−n+ 1

2

0 1





Kj,k,n :=





1− qk−n+j+ 1

2

1− q2k+2

1− qk+n−j+ 1

2

1− qk−n−j+ 1

2

1− q2n

1− q

1− q2j

1− qk−n−j+ 1

2

qk−n−j+ 1

2

0 1





Nj,k,n :=





1− qn−j+k+ 1

2

1− q2n+2

1− qn+j−k+ 1

2

1− qn−j−k+ 1

2

1− q2j

1− q

1− q2k

1− qn−j−k+ 1

2

qn−j−k+ 1

2

0 1





This pretty, three-dimensional system, when path multiplied around an infinite rectangle
based at j = a, k = b, n = 0 in either the k-n or n-j plane, gives Andrews’s q-gneralization
of Bailey’s 2F 1[

1
2 ] theorem ([4]). (And, by symmetry, there are four other ways to do it.)

By making the coordinate transformation n ← n + j + k + 1
2 , you get Andrews’s q-

gneralization of Gauss’s 2F 1[
1
2 ] (also [4]). To preserve path invariance, this coordinate

change requires that the Jj,k,n and Kj,k,n matrices be replaced by Jj,k,nNj+1,k,n (or
Nj,k,nJj,k,n+1) and Kj,k,nNj,k+1,n (or Nj,k,nKj,k,n+1) respectively, followed by the actual
substitution n ← n + j + k + 1

2 . The multiplication of J and K by N reflects that every
incrementation of j or k must also increment what was formerly n.

A more interesting coordinate change, in greater detail, is







Jj,k,n
Kj,k,n

Nj,k,n







←











Jj,k+j,n+k+j Kj+1,k+j,n+k+j Nj+1,k+j+1,n+k+j

Kj,k+j,n+k+j Nj,k+j+1,n+k+j

Nj,k+j,n+k+j











which gives
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Jj,k,n =





−
1− qj−n+ 1

2

1− q2(j+1)

1− qj+n+ 1

2

1− q2(j+k+1)

1− qj+2k+n+ 1

2

1− q2(j+k+n+1)
q3j+2k+n+ 3

2 −
1− q3j+2k+n+ 1

2

1− q
0 1





Kj,k,n =





1− q2k+j+n+ 1

2

1− q2(k+j+1)

1− q2k+j+n+ 3

2

1− q2(k+j+n+1)
q2j −

1− q2j

1− q
0 1





Nj,k,n =





1− qn+j+ 1

2

1− qn−j+ 1

2

1− qn+j+2k+ 1

2

1− q2(n+j+k+1)

1− q2j

1− q

1− q2(j+k)

1− qn−j+ 1

2

qn−j+ 1

2

0 1



 .

Then a rectangle in the j-k plane, based at j = 0, k = (b− a)/2, n = a− 1
2 , gives

∏

j≥0





−
1− qj+a

1− q2j+2

1− qj+1−a

1− q2j+b−a+2

1− qj+b

1− q2j+b+a+1
q3j+b+1 1− q3j+b

1− q
0 1





1,2

=
b−a
2 !q2

(−1
2 )!q2

b+a−1
2 !q2

(b− 1)!q
(1 + q)b,

where

z!q := (1− q)−z
∏

n≥1

1− qn

1− qn+z
“ = ”

1− q

1− q

1− q2

1− q
. . .

1− qz

1− q
.

Alternatively, writing qa =: A, qb =: B, and multiplying through by 1− q,
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∑

j≥0

(1−Bq3j)
(A, q/A,B; q)j

(q2, ABq,Bq2/A; q2)j
(−Bq(3j−1)/2)j =

(B; q)∞
(ABq,Bq2/A; q2)∞

.

Letting q → 1 in the penultimate equation, and dividing through by b,

4F3

[

a, 1− a, b, b
3 + 1

b−a
2 + 1, b+a+1

2 , b
3

∣

∣

∣

∣

−
1

8

]

=
b−a
2 !

(−1
2)!

b+a−1
2 !

b!
2b

This gives a rapidly convergent (three bits per term) series for the useful but very slowly
(if at all) convergent 2F1[a, b; c+ 1|1]:

c! (c− a− b)!

(c− a)! (c− b)!
= 2F1

[

a, b
c+ 1

∣

∣

∣

∣

1

]

=

4F3





1
2 + a+ b, 1

2 − a− b, 2c− a− b+ 1
2 ,

2c−a−b
3 + 7

6

c+ 1, c− a− b+ 1, 2c−a−b
3 + 1

6

∣

∣

∣

∣

∣

∣

−
1

8





4F3





a− b+ 1
2 , b− a+ 1

2 , 2c− a− b+ 1
2 ,

2c−a−b
3 + 7

6

c− a+ 1, c− b+ 1, 2c−a−b
3 + 1

6

∣

∣

∣

∣

∣

∣

−
1

8





=

4F3





c− 2b− a+ 1, −c+ 2b+ a, c− a, c−a
3 + 1

c− b− a+ 1, b+ 1
2 ,

c−a
3

∣

∣

∣

∣

∣

∣

−
1

8





4F3

[

c− 2b+ 1, −c+ 2b, c, c
3 + 1

c− b+ 1, b+ 1
2 ,

c
3

∣

∣

∣

∣

−
1

8

] 2a

=

4F3





c+ a+ 1, −c− a, c− a, c−a
3 + 1

c+ 1, 1
2 − a, c−a

3

∣

∣

∣

∣

∣

∣

−
1

8





4F3





c− b+ a+ 1, −c+ b− a, c− b− a, c−b−a
3 + 1

c− b+ 1, 1
2 − a, c−b−a

3

∣

∣

∣

∣

∣

∣

−
1

8





2−b.

Even if you neglect to use matrix products to evaluate the 4F3s, these are notably cheaper
than four invocations of the Γ function, especially when a, b, and c might be complex.
Also, the (complex) Beta function is the special case

B(a, b) =
2F1[a− 1,−b; a|1]

b
=

1

(a+ b− 1) 2F1[1− a, 1− b; 1|1]
=

π sinπ(a+ b)

sinπa sinπb 2F1

[

a, b
1

∣

∣

∣

∣

1

]

.
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10. A commercial for q-trigonometry

In the preceding section, we saw both the factorial and q2-factorial of −1/2. The former
is

√
π; why not call the latter

√
πq? More generally, why don’t we have a q-version of the

factorial reflection formula z! (−z)! = πz/ sinπz? I propose

Πq :=
πq

1− q2
= q

1

4

(−1
2 )!

2
q2

1− q2
= q

1

4

∏

n≥1

(1− q2n)2

(1− q2n−1)2
=

q-Wallis product

1− q

= q
1

4 (1 + q + q3 + q6 + q10 + · · ·)2 =
ϑ2ϑ3

2
=

ϑ2
2(0, q

1

2 )

4

= lim
z→0

sinq πz

q−z − qz
= −

π

2

sin′q 0

ln q
=

η(q2)4

η(q)2

where

sinq πz :=
qz(z−1)πq

(z − 1)!q2 (−z)!q2

= q(z−1/2)2
∏

n≥1

(1− q2n−2z)(1− q2n+2z−2)

(1− q2n−1)2

= iqz
2 ϑ1(iz ln q)

ϑ4
= − sinq π(z + 1)

=

∑

−∞<n<∞

(−1)nq(n−z+ 1

2
)2

∑

−∞<n<∞

(−q)n
2

and

cosq πz := sinq π(
1
2 − z) = qz

2
∏

n≥1

(1− q2n−2z−1)(1− q2n+2z−1)

(1− q2n−1)2

= qz
2 ϑ4(iz ln q)

ϑ4
=

∑

−∞<n<∞

(−1)nq(n−z)2

∑

−∞<n<∞

(−q)n
2

.

While Πq is expressible with two Dedekind η functions, Jacobi’s æquatio identica satis
abstrusa ([5]) returns the favor:

η(q) := q1/24
∏

n≥1

1− qn =

(

Π5
q

Π2
q2

− 16Πq Π2
q2

)1/6

.
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So we see that sinq πz and cosq πz are period 2, unit amplitude functions with many of the
properties of their q → 1 ancestors:

sinq(x+ y) =
sinq(x− y)

sinq2(x− y)
(sinq2 x cosq2 y + cosq2 x sinq2 y)

cosq(x+ y) =
cosq(x− y)

cosq2(x− y)
(cosq2 x cosq2 y − sinq2 x sinq2 y)

cosq 2z = (cosq2 z)2 − (sinq2 z)2 = cos 2z
∏

n≥0

(sin2
q2−n z + cos2

q2−n z)

= (cosq z)
4 − (sinq z)

4

sinq 2z =
Πq

Πq2

sinq2 z cosq2 z

=
1

2
Πq

Πq4

√

(sinq4 z)2 − (sinq2 z)4 =
1

2
Πq

Πq4

√

(cosq4 z)2 − (cosq2 z)4

sinq 3z =
Πq

Πq3

(cosq3 z)2 sinq3 z − (sinq3 z)3

=
1

3
Πq

Πq9

sinq9 z −
(

1 +
1

3
Πq

Πq9

)

(sinq3 z)3

sinq 5z =
Πq

Πq5

(cosq5 z)4 sinq5 z −

√

Π3
q

Π3
q5

− 2
Π2

q

Π2
q5

+ 5
Πq

Πq5

(cosq5 z)2(sinq5 z)3

+ (sinq5 z)5

sinq(x− w) sinq(x− y) sinq(y − w) sinq(y − z) sinq(z − w) sinq(z − x)

+ cosq(x− w) cosq(x− y) sinq(y − w) cosq(y − z) cosq(z − w) sinq(z − x)

+ cosq(x− w) sinq(x− y) cosq(y − w) cosq(y − z) sinq(z − w) cosq(z − x)

+ sinq(x− w) cosq(x− y) cosq(y − w) sinq(y − z) cosq(z − w) cosq(z − x) = 0

I actually discovered this last formula in q-land, via a sequence of symmetrizing general-
izations guided by the additional structure imposed by the qs.

Strip mining over undetermined linear combinations of extensive Taylor expansions turned
up the empirical relations
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∑

n≥1

qn

(1− qn)2
− 2

∑

n≥1

q2n

(1− q2n)2
=

1

24

( Π4
q

Π2
q2

− 1
)

+
2

3
Π2

q2

∑

n≥1

qn

(1− qn)2
− 3

∑

n≥1

q3n

(1− q3n)2
=

(Π2
q +3Π2

q3)2

12Πq Πq3

−
1

12

∑

n≥1

qn

(1− qn)2
− 4

∑

n≥1

q4n

(1− q4n)2
=

1

8

( Π4
q

Π2
q2

− 1
)

∑

n≥1

q2n

(1− q2n)2
− 9

∑

n≥1

q18n

(1− q18n)2
=
Π3

q3

Πq
+

1

3

(Π3
q3

Πq9

− 1
)

∑

n≥1

q2n−1

(1− q2n−1)2
− 2

∑

n≥1

q4n−2

(1− q4n−2)2
= Π2

q2 =
∑

n≥1

(2n− 1)q2n−1

1− q4n−2

∑

n≥1

q2n−1

(1− q2n−1)2
− 5

∑

n≥1

q10n−5

(1− q10n−5)2
= Π2

q5

Π2
q5

Π2
q10

+ 16
Π2

q10

Π2
q5

Πq

Πq5

− 4−
Πq5

Πq

.

∑

n≥0

1− q12n+1

1− q2
(2n− 3

2 )!q2(2n+ 1
2 )!q2

(4n+ 1)!q2

q4n
2

= −q1/4

√

πqπq5

1− q2

1− q10

This last is the a → 0 case of the summation identity of Section 1. Notice how much easier
it is to take the q → 1 limit in this form than in that.

A limiting case of a certain two parameter path invariance result (omitted) can be written

∑

k≥0

(a+ k − 1)!q(k − a)!q
(2k)!q

qk
2

=
πq1/2

sinq1/2 πa

sinq3/2 π a+1
3

sinq3/2
π
3

q(a−1)a/3.

Although Professor Andrews has discovered an equivalent result in Ramanujan’s “lost”
“notebook” ([6]), it is worth noting how the q-trigonometric version clearly reveals this
f(a) as period 2 poles times period 6 zeros times a quadratic power of q.

Professors Andrews and Berndt also inform me that J. W. L. Glaisher had at least the
first half of the identity

(Glaisher) Π4
q =

∑

n≥1

n3qn

1− q2n
=

∑

n≥1

Li−3(q
2n−1)
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by 1905 ([7]). Combinatorially, it says that the number of ways to express n − 1 as the
sum of 8 triangular numbers equals n3 times the sum of the cubes of the reciprocals of the
odd divisors of n. For an explanation of the Li−3, see section 12.

11. From the q-Land Chamber of Commerce

I found the (Glaisher) identity simply by letting the angles vanish in a q-trig identity.
This illustrates one of the several advantages of q-identities: even after giving back all the
conventional parameters, you may still have a neat result.

I have already mentioned that q-structures led me to the four angle trig identity.

Yet another advantage is that you can test q-identities merely by Taylor expanding with
respect to q, whereas in q → 1 land, you are unlikely to be able to expand with respect to
any of the remaining parameters.

Computer algebra has been of great help in exploring q-land, but now perhaps q-land can
return the favor, by deflating the intermediate expression swell that burdens many rational
function manipulations.

For example, the path-invariance check for the matrices underlying Dougall’s theorem
requires the expansion of the numerator of expression (D2), below,

(D1)
q−n+k−i−h−g+1 (1− qn+g)

(

1− qn+h
) (

1− qn+i
) (

1− qn+2k−i−h−g+2
)

(1− qk−i−h−g) (1− qn+k−g+1) (1− qn+k−h+1) (1− qn+k−i+1)

−

(

1− qk−h−g+1
) (

1− qk−i−g+1
) (

1− qk−i−h+1
) (

1− q2n+k+1
)

(1− qk−i−h−g) (1− qn+k−g+1) (1− qn+k−h+1) (1− qn+k−i+1)

(C2) COMBINE(QONE(D1)); /* limq→1 of above */

(D2) (n+g)(n+h)(n+i)(n+2k−i−h−g+2)−(k−h−g+1)(k−i−g+1)(k−i−h+1)(2n+k+1)
(k−i−h−g)(n+k−g+1)(n+k−h+1)(n+k−i+1)

which results in the 99 term expression (D3).

(C3) EXPAND(NUM(D2));

(D3) n4+2kn3+2n3+2ikn2+2hkn2+2gkn2−i2n2−hin2−gin2+2in2−h2n2−ghn2+2hn2−
g2n2+2gn2−2k3n+4ik2n+4hk2n+4gk2n−6k2n−2i2kn−4hikn−4gikn+8ikn−2h2kn−
4ghkn+8hkn−2g2kn+8gkn−6kn+hi2n+gi2n−2i2n+h2in+2ghin−4hin+g2in−4gin+
4in+gh2n−2h2n+g2hn−4ghn+4hn−2g2n+4gn−2n−k4+2ik3+2hk3+2gk3−4k3−i2k2−
3hik2−3gik2+6ik2−h2k2−3ghk2+6hk2−g2k2+6gk2−6k2+hi2k+gi2k−2i2k+h2ik+
4ghik−6hik+g2ik−6gik+6ik+gh2k−2h2k+g2hk−6ghk+6hk−2g2k+6gk−4k−ghi2+
hi2+gi2−i2−gh2i+h2i−g2hi+4ghi−3hi+g2i−3gi+2i+gh2−h2+g2h−3gh+2h−g2+2g−1
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(C4) LENGTH(D3);

(D4) 99

But (D2) is the q → 1 limit of (D1), from the q version of Dougall’s theorem, known as
Jackson’s. Even though (D1) is more complicated than (D2), its expansion, (D5), has
fewer than 1/6 as many terms!

(C5) EXPAND(NUM(COMBINE(D1)));

(D5) q3n+3k−i−h−g+3−q2n+4k−2i−2h−2g+4−q2n+2k−i−h+2−q2n+2k−i−g+2−q2n+2k−h−g+2

+qn+3k−i−2h−2g+3 + qn+3k−2i−h−2g+3 + qn+3k−2i−2h−g+3 + qn+k−i+1 + qn+k−h+1

+qn+k−g+1 + q−n+k−i−h−g+1 − q2k−i−h−2g+2 − q2k−i−2h−g+2 − q2k−2i−h−g+2 − 1

(C6) LENGTH(D5);

(D6) 16

This is because the parameters in the exponents can only combine additively, and are
therefore immune to the profusion of cross-terms plaguing ordinary polynomial multipli-
cation.

And yet, if you needed it, the 99 term expansion is recoverable from the 16 q-terms via
four applications of l’Hospital’s rule. But fortunately, (D5) is only an intermediate result,
whose conversion can be postponed the until it’s trivial.

12. Commercial for negapolylogs

(If Sesame Street can run commercials for letters of the alphabet, I demand equal time for
my favorite special functions.) Running the polylog recurrence in reverse, we differentiate
our way back through a sequence of rational functions which generate the Eulerian number
triangle:
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Li0(x) = x
1

1− x

Li−1(x) = x
1

(1− x)2

Li−2(x) = x
x+ 1

(1− x)3

Li−3(x) = x
x2 + 4x+ 1

(1− x)4

Li−4(x) = x
x3 + 11x2 + 11x+ 1

(1− x)5

...

These are useful rational functions. While yet retaining certain loggish tendencies:

Li−k(e
z) =

dk

dzk
Li0(e

z) k ≥ 0

=
k!

(−z)k+1
−

∑

n≥0

Bn+k+1(1)

n+ k + 1

zn

n!
.

(Note the gap of k powers of z.) The generating function is

∑

k≥0

Li−k(e−z)

k!
tk =

1

ez−t − 1

A sample application is the expansion of tan (or sec or cot or . . .) about an arbitrary point,

dk

dxk
tanx = (2i)k+1 Li−k(−e2ix),

which would otherwise invoke misleadingly transcendental polygammas. And here is the
nub of the “q-Stirling” formula

log
∏

n≥z+y

1− qn ∼z

∑

k≥0

Bk(y)

k!
(ln q)k−1 Li2−k(q

z).
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And we can use negapolylogs to compute Bernoulli numbers and special values of the Euler
polynomials.

Li−k(−1) = (−1)k(2k+1 − 1)
Bk+1

k + 1
=

(−1)k+1

2
Ek(0) = −

Ek(1)

2

Li−k(i) = −2k−1Ek(1) +
i

2
Ek

Li−k(e
πi
3 ) =

1

4

(

(1− 3k+1)Ek(1) + i 3k+
1

2

(

1 + (−1)k
)

Ek(
1
3)
)

Li−k(e
2πi
3 ) =

1

4

(1− 3k+1

2k+1 − 1
Ek(1) + i 3k+

1

2

1 + (−1)k

2k−1 + 1
Ek(

1
3)
)

Finally, do not confuse these with negapolygammas, ψ−k, which become “more transcen-
dental” (deeply nested integrals) with increasing k, and are effectively the logarithmic

derivatives of the “higher factorials” 11
k
22

k
. . .. But that’s another story.
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